Pulmonary Sarcoidosis

Joseph P. Lynch, III, M.D.,¹ Yan Ling Ma, M.D.,² Michael N. Koss, M.D.,² and Eric S. White, M.D.³

ABSTRACT

Sarcoidosis, a granulomatous disorder of unknown etiology, characteristically involves multiple organs. However, pulmonary manifestations typically dominate. Chest radiographs are abnormal in 85 to 95% of patients. Abnormalities in pulmonary function tests are common and may be associated with cough, dyspnea, and exercise limitation. However, one third or more of patients are asymptomatic, with incidental abnormalities on chest radiographs. The clinical course and expression of pulmonary sarcoidosis are variable. Spontaneous remissions occur in nearly two thirds of patients. The course is chronic in up to 30% of patients. Chronic pulmonary sarcoidosis may result in progressive (sometimes life-threatening) loss of lung function. Fatalities ascribed to sarcoidosis occur in 1 to 4% of patients. Although the impact of treatment is controversial, corticosteroids may be highly effective in some patients. Immunosuppressive, cytotoxic, or immunomodulatory agents are reserved for patients failing or experiencing adverse effects from corticosteroids. Lung transplantation is a viable option for patients with life-threatening disease failing medical therapy.

KEYWORDS: Pulmonary sarcoidosis, nonnecrotizing granuloma, necrotizing sarcoid angiitis

The spectrum of sarcoidosis is protean, and virtually any organ can be involved.¹⁻³ Multisystem involvement is characteristic, but pulmonary involvement usually dominates.²⁻⁴ Skin, eyes, and peripheral lymph nodes are each involved in 15 to 30% of patients.¹⁻³,⁶ Clinically significant involvement of spleen, liver, heart, central nervous system (CNS), bone, or kidney occurs in 2 to 7% of patients.¹ Asymptomatic involvement of these organs is far more common. This article limits discussion to pulmonary manifestations of sarcoidosis.⁵

PULMONARY SARCOIDOSIS

Abnormalities on chest radiographs are detected in 85 to 95% of patients with sarcoidosis.⁵⁻¹¹ Cough, dyspnea, or bronchial hyperreactivity may be prominent in patients with significant endobronchial or pulmonary parenchymal involvement.⁵,¹² However, 30 to 60% of patients with sarcoidosis are asymptomatic, with incidental findings on chest radiographs.⁵,¹⁰,¹³,¹⁴ The clinical course is heterogeneous. Spontaneous remissions (SRs) occur in nearly two thirds of patients but the course is chronic in 10 to 30%.⁷⁻¹¹,¹⁵ Chronic, progressive pulmonary...

¹Division of Pulmonary, Critical Care Medicine, and Hospitalists, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California; ²Department of Pathology, Keck School of Medicine, University of Southern California (USC) Los Angeles, California; ³Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.

Address for correspondence and reprint requests: Joseph P. Lynch, III, M.D., The David Geffen School of Medicine at UCLA, Division of Pulmonary, Critical Care Medicine, and Hospitalists, 10833 Le Conte Ave., Rm. 37-131 CHS, Los Angeles, CA 90095. E-mail: jplynch@mednet.ucla.edu.

Sarcoidosis: Evolving Concepts and Controversies; Guest Editors, Marc A. Judson, M.D., Michael C. Iannuzzi, M.D.

Semin Respir Crit Care Med 2007;28:1;53–74. Copyright © 2007 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel: +1(212) 584-4662.

sarcoidosis may cause inexorable loss of lung function and destruction of the lung architecture. Fatality rates ascribed to sarcoidosis range from 1 to 5%. British investigators retrospectively reviewed 818 patients with sarcoidosis (both treated and untreated). Forty-eight patients (5%) died, usually because of chronic respiratory failure or cor pulmonale. A recent epidemiological study in the United Kingdom identified 1019 cases of sarcoidosis between 1991 and 2003. Mortality rates at 3 and 5 years for sarcoid patients were 5% and 7%, respectively, compared with 2% and 4% among age- and gender-matched controls without sarcoidosis. Causes of death were not reported. Swedish investigators followed 505 patients with sarcoidosis for up to 15 years. Thirty patients died (6%), but only four deaths were directly attributed to sarcoidosis (<1% mortality). Huang et al reported 2.8% mortality among 1090 sarcoid patients in Europe. A review of 775 cases of sarcoidosis in Japan reported <1% mortality as a direct result of sarcoidosis. In the United States, mortality rates due to sarcoidosis were <1% in non-referral settings but were higher in referral centers (likely reflecting a bias selecting for more severe cases). In the United States, 87% of deaths attributed to sarcoidosis were secondary to pulmonary complications. By contrast, in Japan, 77% of deaths resulted from cardiac involvement.

CLINICAL FEATURES OF PULMONARY SARCOIDOSIS

In contrast to idiopathic pulmonary fibrosis (IPF), physical findings are usually minimal or absent in pulmonary sarcoidosis. Crackles are present in fewer than 20% of patients with sarcoidosis, even when radiographic infiltrates are extensive. Clubbing, observed in 25 to 50% of patients with IPF, is rare in sarcoidosis. Fatigue and impaired quality of life (QOL) are far more common among patients with sarcoidosis compared with healthy controls. The impact of sarcoidosis on QOL is discussed in depth elsewhere in this issue by Drs. De Vries and Drent.

CHEST RADIOGRAPHIC FEATURES IN SARCOIDOSIS

Bilateral hilar lymphadenopathy (BHL), the classic radiographic feature of sarcoidosis, is present in nearly three quarters of patients; right paratracheal lymph nodes may be involved concomitantly. Enlargement of left paratracheal, paraaortic, and subcarinal lymph node groups may be detected by computed tomographic (CT) scans but are not usually evident on plain chest radiographs. Unilateral hilar lymphadenopathy on CT is uncommon (<10%). Pulmonary parenchymal infiltrates (with or without BHL) are present in 20 to 50% of patients with sarcoidosis. Infiltrates may be patchy or diffuse, but preferentially involve the upper and mid lung zones. When pulmonary fibrosis occurs, volume loss, hilar retraction, and coarse linear bands may be observed on chest radiographs. With advanced fibrocystic sarcoidosis, large bullae, cystic radiolucencies, distortion, mycetomas, or bronchiectasis may be observed.

RADIOGRAPHIC CLASSIFICATION SCHEMA

The chest radiographic staging system developed more than 4 decades ago continues to have prognostic value. This classification schema defines the following stages: stage 0 (normal; Fig. 1); stage I (BHL without pulmonary infiltrates; Fig. 2); stage II (BHL plus pulmonary infiltrates; Fig. 3); stage III (parenchymal infiltrates without BHL; Fig. 4). Radiographic stage IV sarcoidosis, encompassing extensive fibrosis with distortion or bullae, is not universally accepted (see Table 1). The incidence of radiographic stages differs according to

Figure 1 Stage 0 radiographic sarcoidosis. This normal chest x-ray may be observed in 5 to 15% of cases.
geographic regions, ethnicity, and referral bias. Stage I is most common in most series, but significant variability exists (see Table 2). Most studies from Scandinavia cited a striking predominance of radiographic stage I and II disease, whereas some studies from the United States and British Isles cite a disproportionate representation of radiographic stage III and IV disease.

Although individual exceptions exist, the prognosis is best with radiographic stage I; intermediate with stage II; and worst with stage III or IV. SRs occur in 60 to 90% of patients with stage I disease; in 40 to 70% with stage II; 10 to 20% with stage III; and 0% with stage IV. In a sentinel study in the United Kingdom, Scadding followed patients with sarcoidosis for 5 years. At the end of follow-up, 31 of 32 patients (97%) with stage I disease were asymptomatic, whereas only 58% of stage II and 25% of stage III patients were asymptomatic. In the United States, Siltzbach noted similar findings. In his long-term follow-up of 244 patients with sarcoidosis (both treated and untreated), chest radiographs normalized in 54% of patients with stage I disease but in only 31% with stage II and 10% with stage III. Importantly, none of 110 patients with stage I died, whereas mortality rates were 11% with stage II and 18% with stage III disease. British investigators followed 818 patients with sarcoidosis (both treated and untreated) and observed higher rates of radiographic resolution with stage I (59%) compared with stage II (39%) or stage III (38%) sarcoidosis. Swedish investigators followed 505 patients with sarcoidosis (both treated and untreated) for up to 15 years. At 5 year follow-up (both treated and untreated patients), chest radiographs had normalized in 82% of patients with stage I sarcoidosis; 68% with stage II; 37% with stage III. Among 308 patients with stage I disease, 29 (9%) progressed to stage II and only five (1.6%) progressed to
stage III or IV. Danish investigators followed 210 patients with sarcoidosis for 1 to 10 years (both treated and untreated). Among 116 patients with stage I disease, chest radiographs normalized in 57%; only 10 progressed to stage II; none developed stage III. Among patients with stage II, chest radiographs normalized in 48%; only 12% worsened. By contrast, chest radiographs normalized in only one of 10 (10%) with stage III sarcoidosis. The investigators noted that the course of the disease was usually dictated within the first 1 to 2 years of presentation. The vast majority (85%) of all SRs occurred within 2 years of presentation. Among patients who remained in stage II after 2 years of observation, chest radiographs eventually normalized in only 12% and worsened in 30%. Late relapses were rare, however, in patients exhibiting stability for the first 2 years. Only one of 63 patients (1.6%) with stage I at presentation progressed after the second year. Other studies noted that SR occurs in 16 to 39% of patients within 6 to 12 months from the onset of symptoms. Genetic and demographic factors influence prognosis. In a study from New South Wales, chest radiographs normalized in 112 of 150 (75%) patients presenting with stage I or II sarcoidosis. In a cohort of Japanese patients with sarcoidosis, chest radiographs cleared within 3 years in 68%. In a cohort of 193 Spanish patients with sarcoidosis, chest radiographs had normalized in 78% within

Table 2 Distribution of Chest Radiographic Stages in Sarcoidosis

<table>
<thead>
<tr>
<th>Country, Year, # patients</th>
<th>X-ray Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0(%)</td>
</tr>
<tr>
<td>Sweden, 1984 (n = 505)</td>
<td>3</td>
</tr>
<tr>
<td>Denmark, 1982 (n = 243)</td>
<td>0.4</td>
</tr>
<tr>
<td>British Isles, 2000 (n = 212)</td>
<td>9</td>
</tr>
<tr>
<td>British Isles, 1983 (n = 818)</td>
<td>14</td>
</tr>
<tr>
<td>Finland, 2000 (n = 437)**</td>
<td>0</td>
</tr>
<tr>
<td>Japan, 2000 (n = 457)**</td>
<td>0</td>
</tr>
<tr>
<td>USA 1967 (n = 244)**</td>
<td>0</td>
</tr>
<tr>
<td>USA 1997 (n = 337)**</td>
<td>8</td>
</tr>
<tr>
<td>USA 1994 (n = 98)**</td>
<td>20</td>
</tr>
<tr>
<td>USA 1985 (n = 86)**</td>
<td>10</td>
</tr>
<tr>
<td>USA 2001 (n = 736)**</td>
<td>8</td>
</tr>
</tbody>
</table>

*Stage IV not universally adopted.
**Only included pulmonary sarcoidosis.
ND, not described.
2 years. However, persistent infiltrates at 2 years predicted a chronic or persistent course. In the United States, 215 patients with sarcoidosis were followed prospectively for 2 years. In most patients, pulmonary function, x-ray stage, and dyspnea scale did not change during the 2 year period. Only 11 of 176 (6%) with stage 0, I, or II disease progressed to stage III or IV over the 2 year follow-up period. Spirometry worsened in 12%. Involvement of additional organs occurred in 50 patients (23%) during that time frame.

Differing prognoses among studies may reflect ethnic, geographic, or referral biases. Pietinalho et al followed a large cohort of 437 Finnish and 457 Japanese patients for 5 years. Chest radiographs normalized within 1 year in 46% of Japanese but in only 16% of Finnish patients. After 5 years, the rates of radiographic resolution were 73% and 40%, respectively ($p < .001$). During the 5 year period, 43 of 309 (14%) Japanese patients and 28 of 142 (20%) Finnish patients with initial stage I lesions progressed to higher stages infiltrates. At 5 years, among patients with initial stage II disease, chest radiographs had normalized in 73% of Japanese and 36% of Finnish patients. Among patients with initial stage III disease, chest radiographs had normalized by 5 years in 35% of Japanese and 24% of Finnish patients, respectively.

The prognosis of sarcoidosis is distinctly worse among African Americans. Gottlieb et al studied 337 patients with sarcoidosis, 118 of whom achieved SR (36%). Interestingly, only 8% of patients who had SR experienced late relapse, whereas relapse rates were > 74% among patients with corticosteroid-induced remissions. Importantly, sustained remissions were achieved in 50% of Caucasians but only 20% of African Americans ($p = .01$).

These various studies emphasize that the course of sarcoidosis is heterogeneous and variable among ethnic groups. Identifying candidates for therapeutic intervention requires careful follow-up of clinical, radiographic, and physiological parameters. Treatment (discussed later) should be offered to patients with severe or progressive pulmonary or extrapulmonary dysfunction.

ADDITIONAL PROGNOSTIC FACTORS

As has been mentioned, the clinical course and prognosis of sarcoidosis is influenced by ethnic and genetic factors. Black race is associated with a higher rate of chronic progressive disease, worse long-term prognosis, extrapulmonary involvement, and higher risk of relapses. Analysis of a cohort of 736 sarcoid patients in the United States noted that women were more likely to have eye and neurological involvement and erythema nodosum, whereas men were more likely to have eye, liver, bone marrow, extrathoracic lymph node, and skin involvement (other than erythema nodosum). Derangements in calcium metabolism were more common among white subjects. The influence of human leukocyte antigen (HLA) markers and prognosis is controversial. HLA-B8 is associated with acute inflammatory features and a favorable prognosis, whereas HLA-B13 is often associated with a progressive and protracted course. Some HLA patterns are associated with a good prognosis in Japanese but a poor prognosis in Italians. The influence of genetics on prevalence and clinical expression of sarcoidosis is discussed elsewhere in this issue by Dr. Iannuzzi.

Clinical features may have prognostic value. Löfgren’s syndrome (i.e., BHL, erythema nodosum, polyarthritis, and fever) portends an excellent prognosis, with high rates (> 85%) of SR. Clinical factors associated with a worse prognosis in sarcoidosis include age onset > 40 years, hypercalcemia; extrathoracic disease; lupus pernio; splenomegaly; pulmonary infiltrates on chest radiograph; chronic uveitis, cystic bone lesions, nasal mucosal sarcoidosis; lower annual family income.

COMPUTED TOMOGRAPHIC SCANS

High-resolution computed tomographic (HRCT) chest scans are superior to conventional chest radiographs in delineating parenchymal, mediastinal, and hilar structures, depicting parenchymal details, and discriminating inflammation from fibrosis. Characteristic features of sarcoidosis on CT include mediastinal and/or hilar lymphadenopathy; nodular opacities and micronodules along bronchovascular bundles; predilection for mid and upper lung zones; an axial distribution; pleural or subpleural nodules; septal and nonseptal lines; confluent nodular opacities with air-bronchograms (i.e., consolidation); and ground-glass opacities (GGOs). Architectural distortion, hilar retraction, fibrous bands, bronchiectasis, cystic radiolucencies, bullae, and enlarged pulmonary arteries may be observed with advanced disease. Multiple CT patterns or features may be present in individual patients and may evolve over time. Findings on initial CT scan can have limited prognostic value, but certain CT features may discriminate active inflammation from fibrosis. Nodules, GGOs, consolidation, or alveolar opacities suggest granulomatous inflammation and may reverse with therapy. By contrast, honeycomb change, cysts, coarse broad bands, distortion, or traction bronchiectasis indicate irreversible fibrosis. Despite the enhanced accuracy of CT, routine CT is not necessary or cost-effective in the management of sarcoidosis. Chest CT scans may be helpful in the following circumstances: atypical clinical or chest
Abnormalities in pulmonary function tests (PFTs) are present in ~20% of patients with radiographic stage I sarcoidosis and in 40 to 80% of patients with parenchymal infiltrates (stages II, III, or IV). A restrictive defect with reduced lung volumes (e.g., vital capacity (VC) and total lung capacity (TLC)) is characteristic. The diffusing capacity for carbon monoxide (DLCO) is the most sensitive of the PFT parameters, but the degree of impairment is less severe in sarcoidosis than in IPF. Even when chest radiographs are normal, forced vital capacity (FVC) or DLCO is reduced in 15 to 25% and 25 to 50% of patients, respectively. Oxygenation is preserved until late in the course of sarcoidosis.

Airflow obstruction (e.g., reduced forced expiratory volume in 1 second (FEV1) and expiratory flow rates) occurs in 30 to 50% of patients with pulmonary sarcoidosis. Airflow obstruction may be caused by multiple mechanisms, including narrowing of bronchial walls (via granulomatous lesions or fibrotic scarring), peribroncholar fibrosis, airway distortion caused by pulmonary fibrosis, compression by enlarged lymph nodes, small airways disease, and bronchial hyperreactivity. One study of 107 patients with newly diagnosed sarcoidosis noted a decreased FEV1:FVC ratio in 61 patients (57%). The DLCO was reduced in 29 (27%); only seven (6%) manifested restriction. Airflow obstruction was more frequent with worsening radiographic stage. Another study of 18 sarcoïd patients (all of whom had reduced lung volumes or DLCO) found that airways obstruction was present in all 18 when sensitive tests were employed (e.g., frequency dependence of compliance, airway resistance, closing volumes). Airflow obstruction is suggested by CT showing bronchial mural thickening, small airway narrowing, or patchy air trapping (mosaic pattern of perfusion). Patients with advanced pulmonary sarcoidosis (radiographic stages III or IV) may exhibit severe decrements in FEV1:FVC. Additionally, increased airway hyperreactivity in response to methacholine is common in patients with sarcoidosis. Clinically, this may manifest as chronic, hacking cough. In one study, 50% of patients with stage I or II sarcoidosis exhibited bronchial hyperreactivity following methacholine challenge. A more recent series cited bronchial hyperreactivity in 46 of 80 (58%) sarcoïd patients. Bronchial hyperreactivity likely reflects granulomatous inflammation involving the bronchial mucosa. Clinical bronchiectasis is a rare complication of stage IV sarcoidosis.

Impaired respiratory muscle function (RMF) may contribute to dyspnea or exercise limitation in patients with sarcoidosis. In a cohort of 18 sarcoïd patients with normal PFTs, inspiration muscle endurance (IME) was impaired compared with healthy controls, and correlated with symptoms and impaired QOL. French investigators studied 34 sarcoïd patients and 19 controls. Reductions in IME were noted in the sarcoïd patients and correlated with impairments in health-related quality of life (HRQOL). Baydur et al measured RMF by mouth inspiratory muscle pressure (PImax) and expiratory muscle pressure (PEmax) in 36 sarcoïd patients and 25 controls. Significant linear relationships were found between increasing dyspnea and decreasing RMF. Interestingly, dyspnea did not correlate with lung volumes or DLCO.

Alterations in cardiopulmonary exercise test (CPETs) have been noted in 28 to 47% of patients with sarcoidosis. Typical findings include ventilatory limitation or increased dead space volume/tidal volume (VD/VT) or widened alveolar-arterial O2 (A-a O2) gradient with exercise. CPET may be abnormal when static PFTs are normal. Miller et al performed CPET in 30 sarcoïd patients with normal spirometry; DLCO was normal in 13. Maximal exercise testing elicited ventilatory abnormalities in 14 (47%) Abnormal CPET (e.g., excessive ventilation to oxygen consumption and abnormal VD/VT) were noted in eight of nine with a low DLCO compared with 11 of 21 with a normal DLCO. Widened A-a O2 gradient was observed primarily in patients with low DLCO. Delobbe et al performed CPETs in 19 sarcoïd patients with normal resting PFTs (including DLCO). Compared with age- and sex-matched healthy sedentary controls, sarcoïd patients displayed reductions in maximal workload, VO2 max, tidal volume (VT), heart rate, and increased VD/VT with exercise. Another study of 20 patients with mild pulmonary sarcoidosis noted abnormalities on CPET in nine patients (45%). VO2 at the anaerobic threshold was low, and/or the rate of increase of VO2 was abnormal relative to work rate or heart rate, suggesting a defect in cardiocirculatory function. Resting and exercise echocardiography revealed normal left ventricular function in all patients, but right ventricular dysfunction or hypertrophy was evident in five. Thus abnormal response of VO2 during exercise may reflect subclinical right heart dysfunction or an impaired heart rate response to exercise.

Exercise-induced desaturation correlates with reductions in DLCO. In a series of 32 patients with pulmonary sarcoidosis, DLCO < 55% had a high sensitivity (85%) and specificity (91%) in predicting exercise-induced desaturation. Lamberto et al reported
that alveolar membrane diffusing capacity (Dm) and DLCO were the strongest predictors of gas exchange abnormalities during exercise.94 In contrast, lung volumes and expiratory flow rates did not correlate with exercise gas exchange.94 Arterial desaturation with exercise is rare in patients with radiographic stage I disease or preserved DLCO.93 Arterial desaturation and DLCO correlate with the extent and severity of sarcoidosis as assessed by CT.92

Although CPET is more sensitive than static PFTs in predicting work and exercise capacity, the practical value of CPET is limited. Spirometry and oximetry are usually adequate to follow the course of the disease. For patients with more severe disease, non-invasive 6 minute walk tests provide additional quantitative data.

Physiological aberrations correlate only roughly with histological severity of the disease.74,95–98 Early studies employing quantitative morphometric analyses noted that physiological parameters failed to predict the histologic severity of the disease (on open-lung biopsy specimens).74,96,97 Although PFTs were more seriously deranged among patients with advanced fibrosis, the degree of overlap was considerable. Further, physiological parameters cannot discriminate alveolitis (that might be amenable to therapy) from irreversible fibrosis.

The extent of pulmonary physiological impairment correlates with severity of disease by chest radiographs99–102 or CT scans,31,32,101,103 but correlations are imprecise. Semiquantitative scoring systems improve the correlations between physiological parameters and HRCT.101,103–105 In a seminal study, Bergin noted that semiquantitative scores on CT correlated inversely with FVC ($r = -0.81$) and to a lesser extent, with DLCO ($r = -0.49$).31 Drent and colleagues found that HRCT correlated with FEV1, FVC, DLCO, PaO2max (maximal partial pressure for oxygen), and was more sensitive than chest radiographs in detecting pulmonary disability or abnormal gas exchange.106 However, given the imprecise correlations between CT and physiological parameters, direct measurement of PFTs is critical to assess the extent and degree of pulmonary functional impairment.

Specific CT findings (e.g., thickening or irregularity of bronchovascular bundles, intraparenchymal nodules, septal and nonseptal lines, and focal pleural thickening) correlate with functional impairment, whereas other features (e.g., focal consolidations, GGOs, or enlarged lymph nodes) are less important.106 The pattern of CT may reflect underlying pathology. Hansell et al noted that a reticular pattern on HRCT correlated inversely with FVC, FEV1, FEV1:FVC, and DLCO.107 Others affirmed that reticular and fibrotic abnormalities on HRCT correlated modestly with physiological aberrations, whereas mass lesions or confluence did not.104 Honeycomb change is most often associated with restriction and low DLCO, whereas bronchial distortion is often associated with reduced expiratory flow rates.58 CT patterns may evolve over time. A study of serial CT in 40 patients with pulmonary sarcoidosis found several distinctive evolutionary patterns.108 Macroscopic nodules often disappeared or decreased in size at follow-up. In some patients, GGOs and consolidation resolved, but in others these patterns evolved into honeycombing and were associated with a decline in FVC. A conglomeration pattern shrank and evolved into bronchial distortion and a decline in FEV1:FVC. The salient features and significance of CT are discussed in detail elsewhere in this issue by Dr. Wells and colleagues and will not be further addressed here.

INFLUENCE OF PULMONARY FUNCTION ON PROGNOSIS

Physiological parameters at the onset do not predict long-term outcome in patients with sarcoidosis,63,109–111 but mortality is higher among patients with severe physiological impairment.16 Sequential studies are important to follow the course of the disease and assess response to therapy. Several studies found that VC improves more frequently than DLCO,63,112–114 TLC,114 or arterial oxygenation.98 Changes in VC and DLCO are usually concordant; discordant changes occur in fewer than 5% of patients.15,98 A prospective study in the United States of 193 sarcoid patients cited excellent concordance between changes in FVC and FEV1.15 Changes in FVC and FEV1 were discordant (in the same direction) in 155 patients (80.3%) but were never discordant (opposite directions). In a previous study, measurement of oxygen saturation at rest or during exercise was no more sensitive than VC or DLCO among patients with sarcoidosis.98 Given the variability of DLCO,63 and the expense of obtaining lung volumes, spirometry and flow-volume loops are the most useful and cost-effective parameters to follow the course of pulmonary sarcoidosis. Additional studies such as DLCO, TLC, or gas exchange have a role in selected patients. Criteria for assessing “response” or improvement have not been validated. Most investigators define a change in FVC >10 to 15% or DLCO $>20%$ as significant.98,115 Responses to therapy are usually evident within 6 to 12 weeks of initiation of therapy.63,116

LABORATORY FEATURES

Serum angiotensin-converting enzyme (SACE) is increased in 30 to 80% of patients with sarcoidosis and may be a surrogate marker of total granuloma burden.5,117 False-positives are noted in fewer than 20% of patients with other pulmonary disorders. However, SACE may be normal in patients with active disease. We believe SACE provides ancillary information when the activity of sarcoidosis is uncertain on clinical grounds. However, SACE should not be used in isolation to dictate therapeutic interventions. Historically, the
PATHOGENESIS OF SARCOIDOSIS

Sarcoidosis is characterized by accumulations of activated T cells and macrophages at sites of disease activity (such as the lung). Sarcoid T lymphocytes belong to the helper CD4 phenotype; rarely, CD8+ lymphocytes predominate.119,120 Interactions between alveolar macrophages, CD4 T-helper (Th) cells, and a Th1-cytokine network drive the granulomatous process.2 Lung T cells from patients with sarcoidosis spontaneously release Th1 cytokines such as interferon (IFN)-γ121 and interleukin (IL)-2,122 IL-12, a product of activated macrophages, upregulates the development of Th1 cells and amplifies the Th1 response (especially IFN-γ).123 Interleukin-18 acts synergistically with IL-12 to induce release from Th1 cells and enhances cytotoxicity of T cells.124 Increased serum and bronchoalveolar lavage fluid (BALF) levels of IL-18 were noted in patients with sarcoidosis and may be a surrogate marker of disease activity.125 Sarcoid alveolar macrophages release other cytokines that drive the lymphocytic alveolitis, including tumor necrosis factor (TNF)-α,126 IL-6,127 IL-15,128 monocyte chemotactic protein-1 (MCP-1),129 RANTES (regulated upon activation normal T cell expressed and secreted),129 and macrophage inflammatory protein (MIP)-1α and MIP-1β.130 The CC chemokines MIP-1α and MIP-1β recognize CCR5 as a cellular receptor in activated T cells and alveolar macrophages.130 MIP-1β may be important in the early (inflammatory) phases of sarcoidosis, whereas MIP-1α likely participates in later (fibrotic) phases.130 CCR5 is expressed at high levels in CD4 Th1 lymphocytes and induces increased production and release of IL-1 and IFN-γ.130 Down-regulation of CCR5 in advanced (fibrotic) stages of sarcoidosis may indicate switch to Th2 phenotype, which may enhance fibrosis.131 Later stages of pulmonary sarcoidosis (stage III or IV) are associated with progressive increases in neutrophils and eosinophils.130 Further, there is a relative reduction in CD4 and increase in CD8 lymphocytes in stage III as compared with stage I sarcoidosis.130,132,133 Other chemokines that contribute to recruiting leukocytes in pulmonary sarcoidosis include RANTES (CCL5),129 monocyte chemotactic protein-1 (MCP-1) (CCL2),134 the novel chemokine single cysteine motif (SCM)-1α (XCL-1),134 and interferon-γ inducible protein 10 (CXC10).135 Factors that modulate or downregulate the granulomatous response have not been fully elucidated. Increased levels of TNF-receptors (TNF-R) have been noted in plasma and BALF in patients with sarcoidosis.136,137 Increased expression of IL-13 (a Th2 cytokine), by sarcoid alveolar macrophages138 may attenuate or abrogate the granulomatous response. Increased expression of IL-10 in sarcoid bronchoalveolar lavage (BAL) cells has been noted in some,139,140 but not all,138 studies. Further, genetic polymorphisms may influence the clinical expression and evolution of the disease. In Scandinavian patients with pulmonary sarcoidosis, lung T cells express T cell receptor (TCR) AV2S3 and the human leukocyte antigen (HLA)-DR17 alleles.141 These lung-restricted AV2S3 + T cells correlated with the CD4:CD8 ratio, acute disease onset, and a good prognosis.141 These AV2S3 + T cells may have a protective role against a putative sarcoïd antigen. In a cohort of Dutch patients, polymorphisms in C-C chemokine receptor 2 were associated with Löfgren’s syndrome but were not observed in healthy controls or sarcoid patients without Löfgren’s syndrome.142 Other investigators found that certain HLA haplotypes were associated with acute onset and short duration of disease and were protected against pulmonary disease progression in Dutch and United Kingdom sarcoidosis patients.143,144 The influence of genetics on disease susceptibility, clinical expression, and evolution of the sarcoid lesions is discussed in detail in this issue by Dr. Iannuzzi.

BRONCHOALVEOLAR LAVAGE FLUID IN SARCOIDOSIS

BAL has provided significant insights into the pathogenesis of sarcoidosis.145 BAL in sarcoidosis demonstrates increased numbers of activated lymphocytes (typically CD4+ T cells), alveolar macrophages, and myriad proinflammatory cytokines and mediators.145 BAL lymphocytosis is present in >85% of patients with pulmonary sarcoidosis; granulocytes are normal or low.145–148 The CD4:CD8 ratio is increased in 50 to 60% of patients with sarcoidosis.145 In late phases of sarcoidosis, neutrophils or mast cells or both may be increased.82,100,149–151 BAL cell profiles are not specific for sarcoidosis, but they narrow the differential diagnosis.145,146,148 Importantly, BAL cell profiles fail to predict prognosis or responsiveness to corticosteroid therapy.2,132,145,147,152,153 Similarly, initial BAL CD4:CD8 ratios do not consistently predict outcome or responsiveness to therapy.145 In fact, marked CD4 lymphocytic alveolitis is characteristic of Löfgren’s syndrome, which remits spontaneously in more than 85% of patients.132,147,154 BAL is expensive and invasive, and we see no clinical role for BAL in determining the need for therapy or following response.

RADIONUCLIDE TECHNIQUES

Radionuclide techniques [e.g., 67gallium citrate155,156 scintigraphy with somatostatin analogues (111Indium-penetreotide-)157,158 or technetium99m-labeled depreotide]159 or 18fluoro-2-deoxyglucose (18FDG) positron
emission tomography (PET) scans have been employed to diagnose or assess disease activity in sarcoidosis. These techniques are expensive, and clinical value has not been established. HRCT scans are superior to radionuclide techniques to assess inflammatory and intrathoracic involvement in sarcoidosis. Gallium scans are inconvenient (scanning is performed 48 hours after injection of the radioisotope) and lack prognostic value. However, Ga scans may have a role in selected patients in whom the diagnosis is difficult, such as in cases with normal chest radiographs and features suggesting extrathoracic sarcoidosis [e.g., uveitis, involvement of the central nervous system (CNS), etc.]. Uptake of Ga may identify appropriate sites to biopsy. PET scans may demonstrate increased metabolic activity in patients with pulmonary sarcoidosis, but the clinical value of PET is uncertain. PET has a potential role in identifying sarcoid activity at extrapulmonary sites (e.g., bone, cardiac, or neural sites). Currently, the value of radionuclide scans in assessing intrathoracic involvement remains to be established.

DIAGNOSIS OF PULMONARY SARCOIDOSIS

The histological hallmark of sarcoidosis is a necrotizing granulomatous process, typically distributing along bronchovascular bundles and lymphatics (Figs. 5–8) (discussed in depth elsewhere in this issue by Dr. Rosen). Flexible fiberoptic bronchoscopy (FFB) with transbronchial lung biopsy (TBLB) is the initial diagnostic procedure of choice in patients with suspected pulmonary sarcoidosis. Sensitivity of TBLB ranges from 60 to 90%; yields are lower with radiographic stage 0 disease. When mediastinal lymphadenopathy is present on chest CT, transbronchial needle aspiration (TBNA) biopsies with Wang 18, 19, or 22 gauge cytology needles are diagnostic in 63 to 90% of patients. Typical features of sarcoidosis by cytological examination include lymphocytes, epithelioid cell granulomas, multinucleated giant cells with no or minimal necrosis, clusters of palisading epithelioid histiocytes, and negative stains for fungi and acid-fast bacteria (AFB). In two recent studies, the combination of TBNA and TBLB had a higher yield than either procedure alone. TBNA is much less expensive than mediastinoscopic lymph node biopsy but requires skill. Damage to the bronchoscope may complicate TBNA, particularly when performed by individuals with limited experience.

CT-guided transthoracic fine needle aspiration (FNA) with or without core needle biopsy may be useful to diagnose malignant or benign lesions involving mediastinal or subcarinal lymph nodes (yields up to 78%). Complications of transthoracic FNA include pneumothoraces (10 to 60%) or hemoptysis (5 to 10%). Endoscopic ultrasound (EUS)-guided FNA has been used to diagnose mediastinal masses or lymph nodes, with high yield (> 90%) in patients with malignancy, but experience is limited in patients with sarcoidosis. EUS allows visualization of mediastinal structures, including the paraesophageal space, aortopulmonary window, and subcarinal region. The optimal approach to diagnosing mediastinal lymph nodes (i.e., TBNA or CT-guided FNA) depends upon the expertise and preference of the local institution.

Surgical biopsies are not usually required to diagnose sarcoidosis. However, when the foregoing procedures are not definitive, biopsy of either or both mediastinal lymph nodes and lung may be warranted. This can generally be done with minimally invasive procedures, such as cervical mediastinoscopy, the Chamberlain procedure (a parasternal minithoracotomy to biopsy aortopulmonary window or para-aortic nodes), or video-assisted thoracoscopic surgical (VATS) biopsy.
SPECIFIC COMPLICATIONS OF INTRATHORACIC SARCOIDOSIS

Pulmonary Vascular Involvement in Sarcoidosis
Clinically significant pulmonary vascular involvement is uncommon in sarcoidosis. However, sarcoid granulomatous lesions follow pulmonary vessels, and incidental histological involvement of vessels was noted in 42 to 89% of open-lung biopsies from patients with pulmonary sarcoidosis.\(^74,190\) Pulmonary arterial hypertension (PAH) was reported in 1 to 5% of patients with sarcoidosis\(^191–195\) but the incidence is much higher among patients with advanced fibrocystic sarcoidosis.\(^196–200\) The United Network for Organ Sharing (UNOS) database identified 363 patients with sarcoidosis listed for lung transplantation (LT) in the United States between January 1995 and December 2002 who had undergone right heart catheterization (RHC).\(^200\) This represented 73% of all listed sarcoid patients. PAH, defined as mean pulmonary arterial pressure (mPAP) > 25 mm Hg, was present in 74%; 36% had severe PAH, defined as mPAP > 40 mm Hg. Importantly, PFTs did not differ between those with or without PAH. However, patients with severe PAH were seven times more likely to require supplemental oxygen. Two previous studies found that PAH was an independent predictor of mortality among patients with sarcoidosis listed for LT.\(^197,199\)

Mechanism(s) responsible for PAH in sarcoidosis include hypoxic vasoconstriction\(^192\); infiltration or obliteration of pulmonary vessels by the granulomatous, fibrotic response\(^201–203\); and extrinsic compression of major pulmonary arteries by enlarged lymph nodes.\(^191,202\) A retrospective study of 22 patients with sarcoidosis and PAH found that mPAP correlated inversely with carbon monoxide transfer factor (TCO) but not with spirometry (e.g., FVC, FEV1).\(^202\) In that study, five lung explants from sarcoid patients with PAH undergoing LT were examined. Granulomas were predominantly located within the veins, associated with occlusive venopathy and chronic hemosiderosis; arterial lesions were minor.\(^202\)

The diagnosis of PAH may be difficult. Non-invasive techniques include chest CT\(^204\) and Doppler echocardiography (DE).\(^197\) Chest CT may be useful to predict PAH in patients with parenchymal lung disease.\(^204\) CT features that suggest PAH include main pulmonary artery (PA) diameter > 29 mm; segmental artery to bronchus ratio > 1:1 in three of four lobes\(^204\); ratio of the diameter of the main PA and of the ascending aorta > 1.\(^205\) Doppler echocardiography is superior to CT in estimating PAH but is less accurate than RHC.\(^197\) In a cohort of 374 patients with end-stage lung disease who were being evaluated for LT, estimates of systolic PAP (sPAP) could be made by DE in 166 (44%).\(^197\) However, sPAP estimates were inaccurate (> 10 mm Hg difference) compared with RHC measurements. In addition, 48% of patients were misclassified as having PAH by DE. Sensitivity, specificity, and
positive and negative predictive values of sPAP estimation for PAH were 85%, 55%, 52%, and 87%, respectively. DE was less accurate in patients with interstitial lung disease (ILD) compared with obstructive lung disease (OLD). The negative predictive value (NPV) of sPAP for DE was 96% among patients with OLD but only 44% for ILD. When right ventricular (RV) findings (e.g., RV dilatation, hypertrophy, or systolic dysfunction) were considered, NPV of DE was 96% for OLD and 74% for ILD. Thus a normal DE does not exclude PAH in patients with ILD. Further, an abnormal DE is not a reliable marker of PAH. When PAH is suspected in patients with sarcoidosis, a confirmatory RHC should be performed to assess the extent of PAP and responsiveness to vasodilators.

The presence of PAH in sarcoidosis markedly worsens survival. In one recent study of sarcoid patients with PAH, 2 and 5 year survival rates were 74% and 59%, respectively. In sharp contrast, 5 year survival with PAH, 2 and 5 year survival rates were 74% and 55%, respectively.202 In one recent study of sarcoid patients with PAH reported by Nunes et al, none received long-term corticosteroids.202 In contrast, none of five with radiographic evidence for pulmonary fibrosis improved.202 The role of vasodilators in sarcoid-associated PAH has not been elucidated, but short- and long-term responses were noted in case reports192 or small series,201,207 In the series of 22 patients with sarcoidosis and PAH reported by Nunes et al, none received long-term vasodilator therapy.202 The authors urged caution in using vasodilator therapy because of the potential for precipitating pulmonary edema in patients with veno-occlusive disease.202

Other rare vascular complications of sarcoidosis (limited to a few case reports) include pulmonary arterial stenoses from granulomatous involvement of the vessels, extrinsic compression of pulmonary arteries by enlarged hilar lymph nodes or fibrosing mediastinitis,72,241 and pulmonary veno-occlusive disease (resulting from obstruction of interlobular septa veins by granuloma or perivascular fibrosis).211,212 Extensive fibrosis of mediastinal or vascular structures may result in narrowing or obstruction of innominate veins213 or superior vena cava (SVC).208,214–220

Necrotizing Sarcoid Angiitis

Necrotizing sarcoid angitis and granulomatosis (NSG), initially described by Liebow in 1973,221 is a rare disorder characterized by pulmonary vasculitis, granulomas, and pulmonary nodules on chest radiographs.222–227 Hilar adenopathy has been cited in 10% to 60% of patients.224–257 Lung biopsies in NSG demonstrate a granulomatous vasculitis involving arteries and veins, confluent nonnocerowing granulomata involving bronchi, bronchioles, and lung, and foci of parenchymal necrosis.222,235 Vascular involvement (angitis) typically consists of intramural granuloma or lymphocytic and plasma cell infiltrates confined to vessels walls.227 Systemic vasculitis does not occur. Since the original description, seven series of NSG,222,223,229–239 as well as case reports224,230–234 have been published, for a total of ~100 cases. In a recent review of 14 cases of NSG, 12 had extrapulmonary symptoms; pulmonary function was normal in 13, but DLCO was decreased in eight of 11 patients tested.227 Chest radiographs demonstrated alveolar infiltrates in seven; nodules in seven; cavitation in two.227 Clinical and radiographic features of NSG are similar to “nodular sarcoid” or “nummular sarcoidosis.”235 Nodular sarcoidosis demonstrates focal nodules composed of masses of granulomas and hyalinized connective tissue.235 We believe that NSG and nodular sarcoid are simply variants of sarcoidosis. Prognosis of these entities is usually excellent. The disease resolves in most patients (either spontaneously or in response to therapy). In one recent series, favorable responses to corticosteroids were noted in five of five treated patients with NSG.227

Bronchostenosis

Stenosis or compression of bronchi may result from granulomatous inflammation of the bronchial wall, extrinsic compression from enlarged hilar nodes, or distortion of major bronchi caused by parenchymal fibrosis.72,73,239–241 Proximal endobronchial stenosis is typically associated with dyspnea, cough, wheezing, and extrapulmonary manifestations.72,73 Atelectasis of involved lobes or segments may result.239,240,242–244 The right middle lobe is most often affected because of the small orifice, sharp angulation from the bronchus intermedius, and large number of local lymph nodes.243 The incidence of bronchostenosis (by bronchoscopic assessment) in patients with sarcoidosis ranged from 2 to 26% in two studies,72,243 but severe bronchostenosis is rare. In a retrospective study of 2500 patients with sarcoidosis, French investigators identified 18 patients with >50% stenosis of proximal bronchi.73 Bronchoscopic patterns included single focal stenosis, multiple focal stenoses, and diffuse narrowing of the bronchial tree.73 Edema and inflammation of the mucosa at sites of stenosis were a universal finding. Endobronchial biopsies revealed non-necrotizing granuloma in 77% of patients.73 Wheezing, high-pitched inspiratory “squeaks,” or stridor may be evident on chest auscultation in patients with symptomatic bronchostenosis.72 Helical CT scans are useful to determine the extent and nature of stenotic lesions in the lower respiratory tract,78 but CT overestimates the degree of stenosis.78,245 Early initiation of corticosteroid therapy...
may be efficacious.73 Conversely, delay in therapy may result in acquired fixed stenoses and persistent ventilatory defects.73 Dilatation of endobronchial stenoses should be considered for patients refractory to medical therapy.246

Mycetomas

Mycetomas (typically due to *Aspergillus* species) may develop in cystic spaces (typically in the upper lobes) in patients with advanced (stage III or IV) sarcoidosis.39,40,247,248 Ipsilateral pleural thickening usually precedes the fungus ball or air-crescent sign.240 Mycetomas are often asymptomatic, but fatal hemorrhage can occur due to invasion of vessel walls.243,247,250 Prognosis of aspergilloma is poor (fatality rates \(> 50\% \)); most fatalities reflect progression of the underlying disease rather than a direct complication of mycetoma.39,40 Surgical resection is advised for localized lesions in patients able to tolerate surgery39,40,247 but the risk of surgery may be prohibitive in patients with severe parenchymal disease or extensive pleural adhesions.39,247 Anecdotal success has been cited with topical or intracavitary therapy, but experience is limited.251,252 Systemic antifungal therapy is of unproven value. Bronchial embolization may control intractable bleeding.40

Pleural Involvement in Sarcoidosis

Clinically significant pleural manifestations (e.g., pneumothorax, pleural effusions, chylothorax) occur in 2 to 4\% of patients with sarcoidosis.253–259 Pleural thickening may be observed when sensitive techniques are applied but is usually associated with clinical symptoms. Two studies using HRCT cited pleural thickening in 9\%32 and 11\%260 of sarcoid patients, respectively. The incidence is higher in patients with chronic fibrocytic sarcoidosis. A study of 61 patients with chronic sarcoidosis (\(> 2 \) years duration) cited pleural involvement on chest CT in 25 (41\%); this included 20 cases of pleural thickening and five effusions.261 Pleural thickening was more common among patients with parenchymal fibrosis (stage IV), restrictive PFTs, and low DL_{CO}.g Earlier reports noted that pleural involvement in sarcoidosis was typically associated with widespread parenchymal lung disease.262,263 Subpleural or pleural nodules264,265 may be observed by HRCT in 22 to 76\% of sarcoidosis cases,3,261,266,267 but rarely cause symptoms. Pleural effusions complicate sarcoidosis in \(< 3\% \) of patients and, when present, are usually asymptomatic.259 Kostina et al detected only three pleural effusions among 2775 patients with pulmonary sarcoidosis.268 The incidence is more common when more sensitive tests are used. In a recent prospective study, thoracic ultrasonograms were performed in 181 consecutive outpatients with sarcoidosis.257 Pleural effusions were detected in five (2.8\%) but only three were attributed to sarcoidosis; two were a manifestation of congestive heart failure. Sarcoid pleural effusions may be either transudative or exudative; lymphocytosis occurs in two thirds of cases,73 with predominance of CD\textsubscript{4} lymphocytes.259,260,270 A few cases of eosinophilic pleural effusions were described.271,272 Although exceedingly rare, cases of massive pleural effusions have been described.273–277 In one case, pleural sarcoidosis with “trapped lung” required decortication for relief of symptoms.278 Pneumothorax may complicate sarcoidosis,255,259,268,279–282 due to rupture of bullae or necrosis of subpleural granulomas.259 Only a few cases of chylothorax complicating sarcoidosis have been reported.283–287

Sarcoidosis in HIV-Infected Patients

Sarcoid-like granulomatous response is a rare complication of infection due to human immunodeficiency virus (HIV).288–293 Chest radiographic288 and histological292 findings are similar to sarcoidosis in non-HIV infected patients. Most cases occur after beginning highly active antiretroviral therapy (HAART),288,291–295 but sarcoidosis can precede institution of HAART.288,296 The sarcoid-like granulomas following HAART likely reflect immune reconstitution, with influx of naïve and IL-2 receptor-positive CD\textsubscript{4} cells.292,297,298 However, CD\textsubscript{8} alveolitis was noted in one case.299 Administration of exogenous IL-2, which leads to a sustained increase in CD\textsubscript{4} T cells,300 may precipitate sarcoid-like lesions in HIV-infected patients. In one HIV-infected patient with undetectable viral load under HAART, sarcoidosis developed 2 months after initiation of IL-2 treatment.293 Symptoms resolved following discontinuation of IL-2. Treatment of sarcoid-like reaction in HIV-infected patients is controversial, but favorable responses to corticosteroids have been noted.290,298

Sarcoidosis Complicating Type 1 Interferon Therapy

Type 1 interferons (e.g., IFN-\(\alpha \) or IFN-\(\beta \)), used to treat viral hepatitis, multiple sclerosis, and diverse autoimmune and malignant disorders, may increase IFN-\(\gamma \) and IL-2 levels, evoking a Th\textsubscript{1} lymphocyte bias and granulomatous inflammation.301–303 Sarcoidosis is a rare complication of IFN-\(\alpha \) or IFN-\(\beta \), therapy.301,302,304–311 In a review of 60 cases of sarcoidosis following recombinant IFN-\(\alpha \) (rIFN-\(\alpha \)) therapy; 52 (87\%) were receiving pegylated \(\alpha \)-INF for hepatitis C virus (HCV) infection.303 The remaining cases were associated with hepatitis B infection,309 lymphoproliferative malignancies,312,313 and other hematologic conditions. The incidence of sarcoidosis among patients with HCV infection treated with rIFN-\(\alpha \) was \(< 0.5\% \) in most studies302–304 but one study cited an incidence of 5\%.314 Ramos-Casals et al reported 68 cases of sarcoidosis associated with chronic HCV...
infection; 76% had lung involvement; 30%, skin involvement.304 Sarcoidosis developed within 6 months of antiviral therapy in two thirds of patients. HCV-positive patients with sarcoidosis had a lower incidence of lymphadenopathy (hilar or extrapulmonary) and a higher frequency of cutaneous and articular involvement compared with HCV-negative sarcoid patients.304 Most cases of sarcoidosis resolve with withdrawal of rIFN-α or dose reduction303,304 but corticosteroids are required in some patients.302,315 However, corticosteroids or immunosuppressive agents may increase the viral load304 and should be reserved for highly selected patients.

Alternatives to Corticosteroids
Immunosuppressive, cytotoxic, and immunomodulatory agents have been used to treat patients failing or experiencing adverse effects from CSs.324 The optimal agent(s) has not been determined because controlled studies comparing various agents are lacking. Favorable responses have been cited with methotrexate,325–327 azathioprine,328–330 leflunamide,331,332 cyclophosphamide,333–335 chlorambucil,336 cyclosporine A,337 antimalarials (chloroquine or hydroxychloroquine),338–340 pentoxyfllyline,341,342 thalidomide,343–345 and TNF-α inhibitors346 (particularly infliximab).347–349 Because of potential serious toxicities (including oncogenesis) associated with cyclophosphamide and chlorambucil,350 we do not use these agents to treat pulmonary sarcoidosis. We reserve the use of thalidomide and pentoxyfllyline for research trials. For patients with progressive pulmonary sarcoidosis refractory to CSs, we initiate treatment with azathioprine (dose 100 to 150 mg/d PO) or methotrexate (dose 15–25 mg once weekly PO). These agents can be used in lieu of or in addition to CSs. Hydroxychloroquine (dose 200 mg twice daily) has minimal toxicity and may have modest benefit as adjunctive therapy in selected patients with pulmonary or extrapulmonary sarcoidosis. Infliximab is reserved for severe cases refractory to CSs and these alternative agents. Novel medical therapies for sarcoidosis are discussed in detail by Drs. Baughman and Lower in this issue.

REFERENCES
3. Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee,

34. Lynch JP III. Computed tomographic scanning in sarcoidosis. Semin Respir Crit Care Med 2003;24:393–418

113. Odlum CM, FitzGerald MX. Evidence that steroids alter the natural history of previously untreated progressive pulmonary sarcoidosis. Sarcoidosis 1986;3:40–46

191. Smith LJ, Lawrence JB, Katzenstein AA. Vascular sarcoi-

192. Barst RJ, Ratner SJ. Sarcoioidosis and reactive pulmonary

193. Głuskowski J, Hawrylkiewicz I, Zych D, Zielinski J. Effects
of corticosteroid treatment on pulmonary haemodynamics in

195. Emirgił C, Sobol BJ, Herbert WH, Trout K. The lesser
circulation in pulmonary fibrosis secondary to sarcoioidosis
and its relationship to respiratory function. Chest 1971;60:
371–378.

196. Głuskowski J, Hawrylkiewicz I, Zych D, Wojtczak A,
Zielinski J. Pulmonary haemodynamics at rest and during
exercise in patients with sarcoioidosis. Respiration 1984;46:
26–32.

197. Arcasoy SM, Christie JD, Pochettino A, et al. Character-
osti and outcomes of patients with sarcoioidosis listed for

198. Shorr AF, Davies DB, Nathan SD. Outcomes for patients
with sarcoioidosis awaiting lung transplantation. Chest 2002,
122:233–238.

199. Shorr AF, Davies DB, Nathan SD. Predicting mortality in
patients with sarcoioidosis awaiting lung transplantation.

200. Shorr AF, Helman DL, Davies DB, Nathan SD. Pulmonary
hypertension in advanced sarcoioidosis: epidemiology and

D, Hill NS. Vasoresponsiveness of sarcoioidosis-associated
pulmonary hypertension. Chest 2001;120:866–872.

associated with sarcoioidosis: mechanisms, haemodynamics and

203. Damuth TE, Bower JS, Cho K, Dantzer CR. Major
pulmonary artery stenosis causing pulmonary hypertension

204. Tan RT, Kuzo R, Goodman LR, Siegel RS, Haasler GB,
Presberg KW. Utility of CT scan evaluation for predicting
pulmonary hypertension in patients with parenchymal lung
disease. Medical College of Wisconsin Lung Transplant

205. Ng CS, Wells AU, Padley SA. CT sign of chronic
pulmonary arterial hypertension: the ratio of main pulmonary

206. Humbert M, Sitbon O, Simonneau G. Treatment of
pulmonary arterial hypertension. N Engl J Med 2004;351:
1425–1436.

207. Jones K, Higenbottam T, Wallwork J. Pulmonary vaso-
dilation with prostacyclin in primary and secondary

208. Hamper UM, Fishman EK, Khouri NF, Johns CJ, Wang
KP, Siegelman SS. Typical and atypical CT manifestations
10:928–936.

209. Hieta SO, Stinnent RG, Faunce HF III, Sharpe AR Jr,
Scoggins WG, Smith RH. Pulmonary artery narrowing in

210. Westcott JL, DeGraff AC Jr. Sarcoioidosis, hilar adenopathy,
586.

211. Hoffstein V, Ranganathan N, Mullen JB. Sarcoioidosis
simulating pulmonary veno-occlusive disease. Am Rev

212. Schachter EN, Smith GJ, Cohen GS, Lee SH, Laser A,
Gee JB. Pulmonary granulomas in a patient with pulmonary

vein obstruction and massive pleural effusion. Lung 1980;
157:81–85.

214. Gordonson J, Trachtenberg S, Sargent EN. Superior vena

215. Brandstetter RD, Hansen DE, Jarowski CI, King T, Barletta
A. Superior vena cava syndrome as the initial clinical

216. Radke JR, Kaplan H, Conway WA. The significance of
superior vena cava syndrome developing in a patient with

Sarcoioidosis: rare cause of superior vena cava obstruction.

218. Case records of the Massachusetts General Hospital. Weekly
sarcoioidosis with the recent onset of the superior-vena-cava

219. Narayan D, Brown L, Thayer JO. Surgical management of
superior vena cava syndrome in sarcoioidosis. Ann Thorac

220. Fincher RM, Sherman EB. Superior vena cava obstruction

221. Liebow AA, The J. Burns Amberson lecture: pulmonary

222. Churg A. Pulmonary angiitis and granulomatosis revisited.

223. Chittock DR, Joseph MG, Paterson NA, McFadden RG.
Necrotizing sarcoioid granulomatosis with pleural involvement:

224. Niimi H, Hartman TE, Muller NL. Necrotizing sarcoioid
granulomatosis: computed tomography and pathologic

PA. Necrotizing sarcoioid-like granulomatosis: clinical,
pathologic, and immunopathologic findings. Hum Pathol

226. Churg A, Carrington CB, Gupta R. Necrotizing sarcoioid

sarcoioid granulomatosis: clinical, functional, endoscopic

sarcoioid granulomatosis: computed tomography and pathologic
examinations in 24 patients. Lab Invest 1978;38:
364.

229. Schachter EN, Smith GJ, Cohen GS, Lee SH, Laser A,
Gee JB. Pulmonary granulomas in a patient with pulmonary

230. Beach RC, Corrin B, Soups JW, Graham E. Necrotizing
sarcoioid granulomatosis with neurologic lesions in a child.

Necrotizing sarcoioid granulomatosis with extrapulmonary
involvement: clinical, pathologic, ultrastructural, and immu-
256. Warshawsky ME, Shanesy HM, Rozo A. Sarcoïdosis involving the thyroid and pleura. Sarcoïdosis Vasc Diffuse Lung Dis 1997;14:165–168

